自动驾驶给激光雷达带来新机遇。中国汽车工程学会、国汽智联汽车研究院编写的《中国智能网联汽车产业发展报告()》称,当前在人工智能的重要应用场景智能网联汽车的自动驾驶和辅助驾驶领域中,激光雷达是实现环境感知的核心传感器之一。无人驾驶汽车领域庞大的车用需求以及无人驾驶技术给人类社会运行带来的潜在变革,为激光雷达带来了广阔的应用前景以及巨大的市场。
政策密集出台,助力激光雷达行业发展。近年来密集出台包括《新能源汽车产业发展规划(-年》、《智能汽车创新发展战略》以及《新时期促进集成电路产业和软件产业高质量发展的若干政策》等一系列政策,不断推进智能传感器及集成电路行业的高速和高效发展。
技术推进及场景扩展带来广阔市场空间。随着人工智能、5G技术的逐渐普及,无人驾驶、高级辅助驾驶、服务型机器人和车联网等行业发展前景广阔。全球来看,根据沙利文的统计及预测,激光雷达整体市场预计将呈现高速发展态势,至年全球市场规模为.4亿美元,较年可实现64.5%的年均复合增长率。国内来看,据麦肯锡研究报告显示,中国将是全球最大的自动驾驶市场,而激光雷达是高级别无人驾驶技术实现的关键,根据沙利文的研究报告,至年,中国激光雷达市场规模将达到43.1亿美元,较年实现63.1%的年均复合增长率,其中车载领域即无人驾驶和高级辅助驾驶是主要组成部分。
国内企业在激光雷达市场勇立潮头。目前,激光雷达行业内主要的公司包括美国的Velodyne、Luminar、Aeva、Ouster,以色列的Innoviz,德国的Ibeo,以及国内的禾赛科技和速腾聚创。年下半年国外激光雷达公司迎来上市的热潮,年禾赛科技预计将作为国内第一家激光雷达领域上市公司。禾赛科技进入激光雷达领域后,凭借优秀的产品性能建立了良好的口碑,销售数量及营业收入均实现较快增长,使得国外厂商的市场占有率不断降低。与此同时,华为于年底首次面向行业正式发布车规级高性能激光雷达产品和解决方案,正式进军激光雷达市场。
1.自动驾驶给激光雷达带来新机遇
激光雷达LiDAR(LightLaserDetectionandRanging)被广泛用于无人驾驶汽车和机器人领域,被誉为广义机器人的“眼睛”,是一种通过发射激光来测量物体与传感器之间精确距离的主动测量装置。其中广义机器人包括具有无人驾驶功能的汽车,也可称之为轮式机器人,另外还包括实现无人清扫、无人运送等功能的新型服务机器人。除了无人驾驶领域,激光雷达的应用领域也在不断拓展,包括以汽车整车厂、Tier1为代表的前装高级辅助驾驶,以智能服务机器人为代表的避障导航系统,还有随着5G技术逐渐普及而产生的智能交通车路协同应用,都为激光雷达带来了更广阔的市场。
1.1激光雷达原理
激光雷达的工作原理是将电脉冲变成光脉冲发射出去,光接收机再把从目标反射回来的光脉冲还原成电脉冲,通过测量发射脉冲与一个或数个回波脉冲之间的时间差而获得距离以及物体材质和颜色等参数。
具体来看,激光雷达由四个系统组成,分别为激光发射、激光接收、信息处理和扫描系统。激光发射系统中激励源周期性地驱动激光器,发射激光脉冲,激光调制器通过光束控制器控制发射激光的方向和线数,最后通过发射光学系统,将激光发射至目标物体;激光接收系统的工作原理是经接收光学系统,光电探测器接受目标物体反射回来的激光,产生接收信号;信息处理系统是接收信号经过放大处理和数模转换,经由信息处理模块计算,获取目标表面形态、物理属性等特性,最终建立物体模型;扫描系统是以稳定的转速旋转实现对所在平面的扫描,并产生实时的平面图信息。
激光雷达主要技术指标包括视场角、线数、分辨率、探测距离、测量精度、反射率和扫描帧频等。
激光雷达是车辆安全和智能化的核心高端传感器,激光雷达也是我国智能汽车战略大力发展的关键基础技术之一。国家发改委、科技部、工信部等11部门联合印发的《智能汽车创新发展战略》中首次定义了什么是智能汽车:是指通过搭载先进传感器等装置,运用人工智能等新技术,具有自动驾驶功能,逐步成为智能移动空间和应用终端的新一代汽车。在这个定义中,“搭载先进传感器”是智能汽车的重要标签。
1.2车载传感器的比较
根据新华网,对比《智能汽车创新发展战略》意见征集稿和正式印发版,在有关核心供应链环节的表述中,意见稿中的“重点推动传感器”被修改为“车载高精度传感器”。这一修改目标更为明确,即培育发展“高精度传感器”。产业方面,发展战略要求推进车载高精度传感器等产品研发与产业化,促进激光/毫米波雷达等自主知识产权军用技术的转化应用。可见,下一步投资建设的落地点,在传感层的机会就在于高精度、高准确度的传感器。
根据新华网,激光雷达、毫米波雷达和摄像头是公认的自动驾驶的三大关键传感器技术。从技术上看,激光雷达与其他两者相比具备强大的空间三维分辨能力。中国汽车工程学会、国汽智联汽车研究院编写的《中国智能网联汽车产业发展报告()》称,当前在人工智能的重要应用场景智能网联汽车的自动驾驶和辅助驾驶领域中,激光雷达是实现环境感知的核心传感器之一。报告认为,在用于道路信息检测的传感器中,激光雷达在探测距离、精准性等方面,相比毫米波雷达具有一定的优势。
无人驾驶汽车的“眼睛”已成为激光雷达的代名词。在复杂场景下,激光雷达有着不可比拟的优势。针对远距小障碍物,毫米波雷达的角分辨率不够,摄像头对远端的通用障碍物识别不够,而这种场景下激光雷达就可能及时识别。对于近距离加塞,这种场景在中国道路上尤其常见,毫米波雷达的角分辨率不够,摄像头通常来说需累计多帧,需要几百毫秒才可以确认加塞,而激光雷达由于精确的角度测量能力和轮廓测量能力,可以2-3帧确认加塞,百毫秒内做出判断。同样的原因,对于近端突出物,毫米波雷达和摄像头相对不足,而激光雷达可以做出快速判断。
在隧道场景下,摄像头在光线亮度发生突然变换的场景有致盲情况发生,而毫米波雷达一般不识别静止物体,如果隧道口刚好有一个静止车辆,这时就需要激光雷达的准确识别能力。此外,十字路口无保护左拐场景对激光雷达的大角度全视场测量能力有很大考验,需要同时满足大视场和远距测量能力。在地库场景,毫米波雷达由于多径反射性能不佳,而光线强弱变化又会影响摄像头的性能,这时激光雷达独特的优势就可以得到发挥。
1.3激光雷达的分类
激光雷达行业具有较高的技术水准与技术壁垒,并同时具有技术创新能力强与产品迭代速度快的特征。其技术发展方向与半导体行业契合度高,激光雷达系统中核心的激光器、探测器、控制及处理单元均能从半导体行业的发展中受益,收发单元阵列化以及核心模块芯片化是未来的发展趋势。
激光雷达可分成一维(1D)激光雷达、二维(2D)扫描激光雷达和三维(3D)扫描激光雷达。1D激光雷达只能用于线性的测距;2D扫描激光雷达只能在平面上扫描,可用于平面面积与平面形状的测绘,如家庭用的扫地机器人;3D扫描激光雷达可进行3D空间扫描,用户户外建筑测绘,它是驾驶辅助和自助式自动驾驶应用的重要车载传感设备。3D激光雷达可进一步分成3D扇形扫描激光雷达和3D旋转式扫描激光雷达。
激光雷达按照测距方法可以分为飞行时间(TimeofFlight,ToF)测距法、基于相干探测FMCW测距法、以及三角测距法等,其中ToF与FMCW能够实现室外阳光下较远的测程(~m),是车载激光雷达的优选方案。ToF是目前市场车载中长距激光雷达的主流方案,未来随着FMCW激光雷达整机和上游产业链的成熟,ToF和FMCW激光雷达将在市场上并存。
按照技术架构可以分为整体旋转的机械式激光雷达、收发模块静止的半固态激光雷达以及固态式激光雷达。相比于半固态式和固态式激光雷达,机械旋转式激光雷达的优势在于可以对周围环境进行°的水平视场扫描,而半固态式和固态式激光雷达往往最高只能做到°的水平视场扫描,且在视场范围内测距能力的均匀性差于机械旋转式激光雷达。由于无人驾驶汽车运行环境复杂,需要对周围°的环境具有同等的感知能力,而机械旋转式激光雷达兼具°水平视场角和测距能力远的优势,目前主流无人驾驶项目纷纷采用了机械旋转式激光雷达作为主要的感知传感器。
激光雷达产业自诞生以来,紧跟底层器件的前沿发展,呈现出了技术水平高的突出特点。激光雷达厂商不断引入新的技术架构,提升探测性能并拓展应用领域:从激光器发明之初的单点激光雷达到后来的单线扫描激光雷达,以及在无人驾驶技术中获得广泛认可的多线扫描激光雷达,再到技术方案不断创新的固态式激光雷达、FMCW激光雷达,以及如今芯片化的发展趋势,激光雷达一直以来都是新兴技术发展及应用的代表。
1.4激光雷达的迭代历史
激光雷达经历了60年左右的发展历程,其技术不断进步并呈现多样化发展趋势,同时随着应用领域的不断拓展丰富,激光雷达逐步迈向商业化,其市场也于近几年迅速扩大,并迎来上市热潮。在汽车产业“电气化、共享化、网联化、智能化”的“新四化”驱动下,年后无人驾驶行业高速发展,激光雷达行业也随之进入迅速发展期。年后激光雷达行业进入新的发展阶段,从技术方案来看,收发器件面阵化及核心模块芯片化为高性能、低成本、高集成度、高可靠性的激光雷达提供了可靠的发展方向,FMCW原理的激光雷达技术方案受到了市场的