白癜风能治疗好么 http://m.39.net/pf/a_7157873.html「鸡肋」的智慧社区
深度学习的「隐痛」,AI产业的「困局」。
作者
李雨晨
“几乎所有的AI企业都没有赚到钱,而根源问题在于人工智能技术本身的缺陷——数据与算法的不安全性。”
对于目前AI企业的生存困境,清华大学人工智能研究院院长张钹院士的这番话很直接。
张钹院士向雷锋网AI掘金志说到,在AI技术驱动的产业中,全球前40个独角兽企业遍布了所有的领域,估值70亿到亿之间。然而,这些独角兽都面临的问题在于:估值极高、销量极小,一家亿估值的企业,其销售额不到一个亿。这不是国内知名学者第一次直陈AI产业的问题。事实上,深度学习的不可解释等“原生性”的问题,在目前看来,仍然没有很好的解决办法。同时,一系列事件让人脸识别应用在一路奔驰后又急速刹车,也让数据隐私和数据安全问题愈加急迫。
如果不解决数据安全和隐私保护的问题,AI企业赋能产业的未来,也必然囿于原地。
诸多的AI企业,困在了“数据和算法”里。
深度学习的「阿喀琉斯之踵」当前,AI基础设施建设的重心集中在数据平台、算力平台上,主要为各类AI解决方案提供基本的运算条件,为AI提供基础生产力,相当于是解决了AI的温饱问题。
在这些基础设施的支撑下,数据和算力的快速增长作为“外部驱动力”,带动了AI产业在包括人脸识别、语音识别等领域的一波浪潮,驱动AI产业“第一增长曲线”的出现。
但是,传统行业由于场景复杂和隐私保护等限制,真正可以使用数据往往并不充足,同时算力的增长也解决不了算法能力上限的问题。
深度学习发展到今天,一个核心特征是神经网络模型变得越来越复杂,训练集越来越大。
例如,今年最火爆的AI机器是GPT-3。
GPT-3的网络层数可以达到96层,参数可以到亿,模型大小G。经过了将近0.5万亿个单词的预训练,在不进行微调的情况下,GPT-3可以在多个NLP基准上达到最先进的性能。
张钹院士表示,深度学习的强大之处在于,在参数化的神经网络里,工程人员可以实现任何复杂的变换。
“换句话说,任何一个图像、文本输进去,都可以用参数化的神经网络将其变成所需要的结果。不管多么复杂,因为这是一个通用的函数映射。”
但是,数据与算法不安全性,就像是深度学习这项技术的阿喀琉斯之踵。
张钹院士表示,算法不安全的原因主要有三点:特征(伪语义)——语义空间映射是多对一;语义空间不是距离空间,是离散的层次空间;缺少语义的基于条件概率建模的“黑箱”学习方法;
而这三点原因也决定了AI模型的推广能力很差。
“马跟石头的语义距离很远,但是在形式空间里的距离又很近,形式空间里做出来的区别,不能保证在语义空间是安全的。这就是为什么AI模型非常容易受到干扰的攻击。这也就造成现在企业为什么难以做大做强,必须扩大应用产品的安全性和鲁棒性。”
RealAI联合创始人刘荔园向AI掘金志表示,AI的可靠性、安全性不高带来的深层次问题在于无法应用到关键场景中的核心问题上,核心决策问题,一定对AI的这些要素要求非常高。
她认为,用户并不是需要一个工程化的机器学习建模平台,而是不管有没有这个平台,都能知道业务可解释的点在哪里,保证模型上线之后是可控的。这是RealAI选择切入的市场。
因此,RealAI想要解决的是各个行业的核心——“决策”问题,而要解决这样的问题,不单是需要提供算法能力,同时还有AI应用可控方面的因素共同支撑。
这也就是清华人工智能研究院提出“第三代人工智能”的出发点。
在年的CCF-GAIR峰会上,张钹院士就提出,今后发展的方向是把第一代人工智能知识驱动的方法和第二代人工智能数据驱动的方法结合起来,发展安全、可信、可靠和可扩展的人工智能技术,从而推动人工智能的创新应用。
从这个角度来说,第三代人工智能技术体系,包括了贝叶斯深度学习、可解释机器学习、AI安全对抗攻防、新一代知识图谱、隐私保护机器学习等技术。
就以贝叶斯深度学习为例,通过对变量之间的关系及神经网络参数进行概率建模,将数据和预测结果中天然存在的不确定性纳入算法,从而实现可靠、可解释的AI。
清华大学人工智能研究院基础理论研究中心主任朱军教授评价到,它(贝叶斯深度学习)既有贝叶斯本身的可解释性,可以从少量的数据里边来学习;另外又有深度学习非常强大的拟合能力。
地平线机器人创始人兼CEO余凯也曾表示,深度神经网络其实更加适合做感知,而贝叶斯理论的核心是推理,只有从感知到推理才能到决策。
因此,未来的AI发展需要拓宽“数据”和“算力”之外的维度,在相同的数据、算力条件下,更好的支撑AI赋能行业的深度应用,打开AI产业化全新的市场空间。
搭建AI的原生基础设施近日,由清华大学人工智能研究院、北京智源人工智能研究院、瑞莱智慧联合主办的“第三代人工智能产业论坛暨瑞莱智慧RealAI战略发布会”在北京召开。
本次战略发布会上,隐私保护机器学习平台RealSecure和人工智能安全平台RealSafe2.0版本相继发布,而发布这两款产品的公司——瑞莱智慧RealAI,则是一家从清华园里走出来的AI企业。
瑞莱智慧CEO田天是清华大学计算机系博士,曾获评西贝尔学者,清华大学特等奖学金,为计算机系十余年间唯一研究生获奖者。
他向AI掘金志表示,在应用中碰到技术难题时,我们不是见一个解决一个,修修补补;而是发现一个问题就看到一类问题,并通过底层技术框架、平台的突破,帮助产业进行升级。
从全行业内来看,RealAI的出身和这种“平台化”打法,有些类似于国内的商汤:
年,商汤创始人汤晓鸥教授一手建立了香港中文大学多媒体实验室,深入探索计算机视觉领域的研究工作,这间实验室的初创团队就是成立商汤科技的前身。
RealAI则是依托清华大学人工智能研究院设立的人工智能企业,由清华大学人工智能研究院院长张钹院士、清华大学人工智能研究院基础理论研究中心主任朱军教授共同担任首席科学家。
从研发背景来看,两者都拥有国内最顶尖的技术、人才资源。
“学者型”特质的公司强在科研和技术能力,可以直接定位到AI产业发展的最前沿,而这类公司的最终目标是实现平台型产品的AI赋能,一旦成功,想象空间巨大。
但是,除了“学者型”气质浓厚的创业公司,AI行业里还有诸多“接地气”的传统厂商。
田天认为,渠道占优的行业厂商,是在传统解决方案的基础上加上一部分AI进行升级改造,进而快速实领域内的增量式提升。
以安防行业为例,无论是传统的安防企业诸如海康威视、大华股份,还是人工智能初创企业商汤、旷视等都在加大AI安防领域的投入。
然而,如果AI能力不强或者只是实现一些“同质化”的浅层应用,在红海市场中会面临激烈的竞争。
此外,AI在行业里落地,一大困难在于“应用场景的碎片化”,最终容易让创业公司沦为一个个的“项目制”公司,导致运营成本高居不下,难以实现技术和产品的高“复用性”。
田天认为,正如社交领域的“